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Abstract

An alternative method to low speed preconditioning for the computation of nearly incompressible flows with

compressible methods is developed. For this approach the leading terms of the flux difference splitting (FDS) ap-

proximate Riemann solver are analyzed in the incompressible limit. In combination with the requirement of the velocity

field to be divergence-free, an elliptic equation to solve for a pressure correction to enforce the divergence-free velocity

field on the discrete level is derived. The pressure correction equation established is shown to be equivalent to classical

methods for incompressible flows. In order to allow the computation of flows at all speeds, a blending technique for the

transition from the incompressible, pressure based formulation to the compressible, density based formulation is es-

tablished. It is found necessary to use preconditioning with this blending technique to account for a remaining

‘‘compressible’’ contribution in the incompressible limit, and a suitable matrix directly applicable to conservative re-

siduals is derived. Thus, a coherent framework is established to cover the discretization of both incompressible and

compressible flows. Compared with standard preconditioning techniques, the blended pressure/density based approach

showed improved robustness for high lift flows close to separation.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Computational methods used in aerospace applications for the computation of compressible flows have

reached a very high level of maturity with respect to accuracy and efficiency, e.g., [1–6]. However, many
aerodynamic problems solved today involve mixed compressible and incompressible flow regions, especially

when considering the flow around the high lift system of aircraft. In order not to sacrifice the mature basis

established with such codes, it is therefore highly desirable to extend these methods towards the incom-

pressible flow regime. Usually, in compressible codes also for steady flow problems the unsteady equations
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are solved as a coupled system in strong conservation form and integrated towards steady state. To achieve

the extension to the solution of low Mach number flows, the time derivatives of the system of compressible

equations are multiplied by a suitable preconditioning matrix [7–9]. However, in regions of very low Mach

number, e.g., near stagnation points and in recirculation regions, the preconditioning matrix may become

singular [10], and the robustness of the computation may be impaired [11]. Therefore, to make compressible

codes applicable to incompressible flow problems with the same reliability as for compressible cases, further

effort seems to be required to understand the basic mechanisms of computing incompressible flows with

methods originally designed for compressible flows.
During the ongoing quest for computational methods being capable to compute flows at all speeds, also

the other alternative, namely to extend classical incompressible, pressure based methods to the compressible

flow regime, is under extensive research [12–18]. In the pressure based approach, staggered [12,16] as well as

colocated [13–15,17,18] locations of variables are employed. The equations are often solved in an uncou-

pled manner using a scalar transport equation for temperature [12,13,17] or enthalpy [16]. In [17] a special

procedure ensures that when using a scalar transport equation for temperature the discrete conservation

law is still satisfied exactly, and when the flow becomes compressible the discretization of the governing

equations is reverted to a scheme frequently used in compressible flow solvers [19]. In other methods
constant enthalpy flow is assumed and the energy equation is dropped [14,18], as was also done in [13] for

the inviscid flow cases computed. However, in aerospace applications the strong conservation form is re-

garded as being of paramount importance to ensure reliable and accurate capturing of all relevant flow

features, and for viscous flows the assumption of constant enthalpy is in general not valid. With regard to

complex configurations, the staggered approach seems less attractive, and switching from one discretization

scheme to another may also lead to conceptual difficulties.

In the present work, a method will be developed which allows application to both compressible and

incompressible flows. As a basis, the MAPS+ flux splitting scheme developed in [20] will be used. The
derivation of the MAPS+ discretization was based on the extension of the flux difference splitting (FDS)

[19] scheme in terms of Mach number. This extension allowed to distinguish between terms relevant in the

compressible flow regime and terms dominant in the incompressible limit. It was shown in [20] that mainly

appropriately scaled pressure differences form the dissipative terms in the incompressible limit. In the

present work, these pressure differences are used to derive an equation for pressure such that a divergence-

free velocity field may be established for the discrete equations. Parallels to classical incompressible pressure

correction methods on colocated meshes [21] will be drawn. The formulation proposed in this work leads to

a consistent framework covering the classical pressure correction approach for incompressible flows and the
density based compressible methods, with the whole derivation relying on the approximate solution of the

Riemann problem. The performance of the present method will be assessed by computing steady incom-

pressible and compressible, inviscid and viscous flow around airfoils.

2. Governing equations

We consider the two-dimensional Navier–Stokes equations for compressible flow. The system of partial
differential equations in strong conservation form is given by

o~WW
ot

þ o~FF x

ox
þ o~FF y

oy
¼ 0; ð1Þ

where ~WW represents the vector of conservative variables, and ~FF x; ~FF y denote the flux-density vectors for the x

and y directions, respectively. Setting the viscous parts of the flux-density tensor to zero, the Euler equa-

tions governing inviscid flow are obtained
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oq
ot

þ oðquÞ
ox

þ oðqvÞ
oy

¼ 0;

oðquÞ
ot

þ oðqu2 þ pÞ
ox

þ oðquvÞ
oy

¼ 0;

oðqvÞ
ot

þ oðquvÞ
ox

þ oðqv2 þ pÞ
oy

¼ 0;

oðqEÞ
ot

þ oðquHÞ
ox

þ oðqvHÞ
oy

¼ 0;

ð2Þ

where x and y denote the cartesian coordinates, and q; u; v;E; p;H , represent density, cartesian velocity

components, specific total energy, pressure, and specific total enthalpy, respectively. In order to close this

system, the equation of state

p
q
¼ R � T ð3Þ

is used with R as specific gas constant and T as temperature. Furthermore, the speed of sound for com-

pressible, isentropic flow is defined by Laplace�s equation

dp
dq

¼ c2: ð4Þ

Approaching the incompressible flow regime, changes in the density of a fluid particle become negligible,

and the energy equation decouples from the fluid flow problem. To solve for incompressible flows, in
conservation form one is left with the set of equations

oðquÞ
ox

þ oðqvÞ
oy

¼ 0;

oðquÞ
ot

þ oðqu2 þ pÞ
ox

þ oðquvÞ
oy

¼ 0;

oðqvÞ
ot

þ oðquvÞ
ox

þ oðqv2 þ pÞ
oy

¼ 0:

ð5Þ

Comparing Eq. (5) to Eq. (2), it is obvious that, as noted above, the energy equation has been dropped.

However, the major difference in these two sets of equations is that the time derivative of density in the

continuity equation has disappeared. As a consequence, the original system of equations (2) is no

longer hyperbolic with respect to time. For incompressible flow as given by Eq. (5), the continuity

equation acts as a constraint which has to be respected, regardless whether the flow is steady or

unsteady. It is essentially this constraint which changes the character of the equations from purely
hyperbolic in time to elliptic, since it is supposed to hold at all times instead of being approached by

marching in time-direction. In the incompressible limit, the material derivative of density becomes zero,

and the continuity equation in Eq. (5) becomes the requirement that the velocity field ~qq has to be

divergence-free

divð~qqÞ ¼ ou
ox

þ ov
oy

¼ 0; ~qq ¼ u
v

� �
: ð6Þ
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3. Derivation of the pressure correction equation

In the discussion of the governing equations, it was pointed out that for incompressible flow the con-

tinuity equation becomes a constraint to be respected at all times, stating that the velocity field ~qq must be

divergence-free, Eq. (6). Applying preconditioning techniques such as [7–9], this constraint is not generally

respected. The preconditioning matrices are purely a mathematical means to reduce the stiffness of the

system of equations by changing the eigenvalues. This is mainly achieved by introducing an artificial speed

of sound which is in the order of the mean flow speed. In [7,22] it was outlined that this artificial speed of
sound also leads to the proper scaling of the artificial dissipation for incompressible flows. After precon-

ditioning the equations, time-marching is used to integrate towards the steady state. However, there is no

guarantee that the time-marching process, during which the velocity field may not be divergence-free,

reaches a steady, divergence-free state. In practice, robustness problems occur with this technique for

complex flows. Regarding the discussion of the governing equations in the incompressible limit, it may be

noticed that the introduction of the artificial speed of sound to reduce the stiffness of the system of

equations is not supported by the physics of the flow: acoustic disturbances are supposed to travel infinitely

fast compared to the flow speed, leading to the fulfillment of the divergence-free constraint. Thus, it may be
suspected that the disregard of the divergence-free constraint is a source for the robustness problems en-

countered when using low speed preconditioning. Therefore, in the present work attention is focused on the

question whether there is a way to respect the divergence-free constraint on the discrete level when solving

for incompressible flows.

In the following, the discrete mass flux obtained from the application of FDS [19] will be analyzed with

respect to the establishment of a divergence-free velocity field. Using the basic FDS scheme of [19], the

inviscid flux density vector ~FF normal to a cell interface may be written as

~FF ¼ 1

2
~FF L
�

þ~FF R
�
� 1

2
A
��� ���D~WW ; ð7Þ

where ~FF L and ~FF R are the left and right states of the inviscid flux density vector normal to the cell interface, A
is the corresponding flux Jacobian, and D~WW denotes the differences in conservative variables between left

and right states of a cell interface. In [20], the expression jAj � D~WW was expanded in terms of the interface

Mach number M0, with M0 defined as

M0 ¼ minðjM j; 1Þ � signðMÞ: ð8Þ

Following [20], the resulting expressions of jAj � D~WW are summarized in Table 1 as flux differences D~FF for the

continuity, momentum, and energy equations. As outlined in [20], for compressible flows the terms scaled

linearly with jM0j become dominant, whereas for incompressible flows these terms vanish and all terms
scaled by ð1� jM0jÞ dominate. Note that in order to obtain the proper scaling of the numerical dissipation

Table 1

Flux difference splitting dissipation expanded in Mach number

DFq ¼ 1

c
ð1� jM0jÞDp þ qjM0jDqn þ jqnjDq

DFqu ¼ nxjM0jDp þ
1

c
uð1� jM0jÞDp þ nxqcð1� jM0jÞDqn þ qujM0jDqn þ jqnjDqu

DFqv ¼ ny jM0jDp þ
1

c
vð1� jM0jÞDp þ nyqcð1� jM0jÞDqn þ qvjM0jDqn þ jqnjDqv

DFqH ¼ 1

c
Hð1� jM0jÞDp � jqnjð1� jM0jÞDp þ qnqcð1� jM0jÞDqn þ qH jM0jDqn þ jqnjDqH
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in the incompressible limit, the speed of sound c in Table 1 has to be replaced by an artificial speed of sound

c0, which is of the order of the mean flow speed [7,20,22]. Thus, the dominance of the pressure differences

scaled by ð1=c0Þð1� jM0jÞ is strongly amplified in these cases. From Eq. (7) and the expressions of Table 1

the discrete mass flux density at a cell face S can be computed as

F q ¼ 1

2
� qqLn
��

þ qqRn
�
� 1

c0
1ð � Moj jÞDp þODT

�
; ð9Þ

where qn denotes the velocity normal to the cell interface defined as qn ¼~qq �~nn with~nn as the outward facing

normal of cell face S, and ODT stands for other dissipative terms as listed in Table 1. The pressure dif-

ference Dp denotes the difference between values on the left side L and right side R at a cell interface, giving

Dp ¼ pR � pL, where the normal vector ~nn at a cell interface is pointing from left to right when the cell

boundary is traversed in a mathematically positive sense. The corresponding discrete mass flux through the

cell face is obtained by multiplying Eq. (9) by the cell face area S:

F q � S ¼ 1

2
� qqLn
��

þ qqRn
�
� 1

c0
ð1� jM0jÞDp þODT

�
� S: ð10Þ

Note that the term ð1=c0Þð1� jM0jÞDp comprises the acoustic part of the crossflow diffusion terms identified

in [20]. In [20], it was the importance of the shear waves in the crossflow diffusion which was pointed out,
whereas in the following it will be these acoustic terms which will be used to derive the pressure correction

equation.

Using the FDS discretization of [19] to obtain the intermediate state at cell interfaces, the discrete di-

vergence of q~qq in a cell is expressed as

divðq~qqÞ ¼ 1

vol
�
Xifaces
i¼1

F q
i � Si ¼

1

vol
�
Xifaces
i¼1

1

2
� qqLn
��

þ qqRn
�
� 1

c0
ð1� jM0jÞDp þODT

�
i

� Si; ð11Þ

where ‘‘ifaces’’ denotes the number of faces of the computational cell with ‘‘i’’ as the running index, and

‘‘vol’’ is the cell volume.
For constant density flows, Eq. (11) is equivalent to the discrete divergence of velocity times a constant,

and a divergence-free velocity field may be established if a pressure correction p0 is introduced such that

divðq~qqÞ ¼ 1

vol
�
Xifaces
i¼1

1

2
� qqLn
��

þ qqRn
�
� 1

c0
1ð � jM0jÞ Dp

�
þ Dp0

�
þODT

�
i

� Si ¼ 0; ð12Þ

where for the differences Dp0 the same conventions hold as in Eqs. (9) and (10) for Dp. Eq. (12) is an elliptic

equation for the correction of pressure to fulfill divðq~qqÞ ¼ 0 on the discrete level. Rearrangement of Eq. (12)

leads to

Xifaces
i¼1

1

2
� 1

c0
ð1

�
� jM0jÞDp0

�
i

� Si ¼
Xifaces
i¼1

1

2
� qqLn
��

þ qqRn
�
� 1

c0
ð1� jM0jÞDp þODT

�
i

� Si

¼ vol �Res½q
; ð13Þ

where Res½q
 represents the residual obtained using the preconditioned FDS discretization of Eq. (7) and

Table 1 to spatially discretize the continuity equation in Eq. (2). The computation of Res½q
 is therefore

identical to the usual way the residual of the continuity equation is computed in compressible codes using

the FDS discretization in combination with low speed preconditioning, where the artificial speed of sound c0

is introduced. Having solved Eq. (13) for the pressure correction p0, the pressure field may be updated by
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pnew ¼ pold þ p0: ð14Þ

Note that the pressure correction equation (13) was directly derived from the approximate solution of the

Riemann problem using the terms of Table 1. The solution of the Riemann problem reflects the information

propagation in the flow field and guides how to construct the intermediate state at a cell interface with

respect to the flow physics. The discrete problem enters the derivation via the scaling of the pressure dif-

ferences by the artificial speed of sound c0. As outlined in [22], this scaling is required since the discrete

equations support pressure disturbances of OðMÞ, in contrast to the analytical equations which only

support OðM2Þ disturbances.

4. Parallels to classical pressure correction schemes

The formulation derived above bears a strong resemblance to classical pressure correction schemes used

to solve for incompressible flows. One of the most prominent representatives of this class of methods is the

SIMPLE (semi-implicit pressure linked equations) scheme of Patankar [23]. Without going into detail,

following the textbook of Hirsch [24] the equation to solve for the pressure correction reads

j ~rr2jp0 ¼ 1

Dt
~rr~qq; ð15Þ

where

~rr ¼ o=ox
o=oy

� �
; Dt � Dx

jqj : ð16Þ

Note that the scaling in Eq. (15) by Dt corresponds to the scaling in Eq. (13) with an artificial speed of

sound of the order of the mean flow velocity.

The SIMPLE scheme of [23] was developed using staggered meshes, and Rhie and Chow [21] imple-

mented the pressure correction method on colocated meshes. In order to avoid pressure/velocity decou-

pling, the mass flux density through a cell interface is augmented by pressure differences to yield [17]

F q ¼ 1

2
qqLn
�

þ qpRn
�
� vol

f ðq; q; l; SÞ
pR � pL

ds

�
� 1

2
~rrpL

�
þ ~rrpR

�
�~ees
�
; ð17Þ

where ds is the distance between the centers of the left and right cell, ~ees is the unit vector pointing in the

direction of the line connecting the left and right cell center, and f ðq; q; l; SÞ is a function scaling the

pressure dissipation. This scaling is of the same order of magnitude as the scaling in Eq. (9) introduced by

the artificial speed of sound in the case of incompressible flows. In order to understand the pressure dis-

sipation terms in Eq. (17), it must be remembered that usually in classical pressure correction methods the
values for pressure at the left and right sides of the interface are not reconstructed via extrapolation as done

in compressible codes, but pL and pR in Eq. (17) are directly taken from the left and right cell center. As was

shown in [25] and also exploited in [14,18], the pressure terms in Eq. (17) lead to dissipative terms comprised

of fourth differences of pressure, scaled inversely by terms of Oðq; lÞ. This pressure differences dissipation in

the mass flux density is thus similar to the pressure differences dissipation found in the mass flux density

given by Eq. (9) using the artificial speed of sound c0: in compressible codes, pL and pR are reconstructed by

extrapolation to obtain second order accuracy, and the differences of the reconstructed values lead to a

fourth differences dissipative operator [26]. Using the artificial speed of sound as with preconditioning in
Eq. (9), the scaling is similar to Eq. (17), with the exception that the influence of the dynamic viscosity l is

neglected.
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Further insight into the similarity of classical colocated pressure correction methods and the present

approach can be gained with regard to what is called the ‘‘correction to the cell face velocity’’ in colocated

pressure correction methods [21,27]: the term �½vol=ðf ðq; q; l; SÞÞ
½ðpR � pLÞ=ds
 in Eq. (17) of the classical,

colocated pressure correction approach is the counterpart to the term �ð1=c0Þð1� jM0jÞDp of the present

method, which was derived from the approximate solution of the Riemann problem. Introducing a pressure

correction p0, this leads for the present method to a term �ð1=c0Þð1� jM0jÞDp0, see Eq. (13), and for the

classical pressure correction equation it yields the term

� vol

ðf ðq; q; l; SÞÞ
p0R � p0L

ds
:

This expression is similar to what is called in colocated pressure correction schemes the ‘‘correction to the

cell face velocity’’ [27]. The equation for the ‘‘correction to the cell face velocity’’, employing the usual

‘‘compass’’ notation of pressure correction literature, reads [27]

u0e ¼ �Se
1

Au
p

 !
e

ðp0E � p0PÞ; ð18Þ

where the index ‘‘e’’ denotes the ‘‘east’’ cell face between cell center P to the left and cell center E to the

right, Se is the corresponding cell face area, and Au
p is the scaling coefficient. Interpreting the dissipative

terms derived from the approximate solution of the Riemann problem in the same way as in colocated

pressure correction schemes, also in the present method a ‘‘correction to the cell face velocity ’’ is estab-

lished. Note that for pressure correction schemes suited for incompressible and compressible flows, however
not velocity but mass flux is ‘‘corrected’’ to ensure mass conservation, see e.g. [21,27]. This is identical to the

procedure resulting from the present method.

Thus, from the explanations above, two conclusions can be drawn. First, the formulation for a pressure

correction equation derived in this work is similar to the pressure correction equation of classical incom-

pressible methods. In [23], the pressure correction equation is derived from the discrete equations using

truncated momentum equations to obtain discrete velocity corrections, and introducing these velocity

corrections into the discrete continuity equation leads to the pressure correction equation. In contrast to

that, in the present investigation, the pressure correction equation was directly derived from the approx-
imate solution of the Riemann problem to respect the constraint of the divergence-free velocity field. The

second conclusion is that the pressure dissipation introduced by Rhie and Chow [21] in order to prevent

pressure/velocity decoupling on colocated meshes is not an arbitrary means, but these terms can be con-

sistently derived from the solution of a Riemann problem at low Mach number, scaled using the artificial

speed of sound c0 to establish the correct damping behavior [22].

5. Implementation of the pressure correction equation for incompressible flows

The pressure correction approach derived above has been implemented in the 3D unstructured, com-

pressible finite volume NOUGAT (node oriented unstructured generic algorithm testing) code. NOUGAT

serves as a research basis for the DLR-s code and uses identical geometrical preprocessing as the s code [3].
Thus, the NOUGAT code is a node based scheme using dual mesh metrics. Deviating from the s code, the

spatial discretization in NOUGAT is based on the MAPS+ flux splitting scheme [20], and least squares

gradients are used for second order reconstruction [28,29]. Time integration is achieved by an explicit 5-

stage Runge–Kutta scheme, and convergence towards steady state is accelerated by local time stepping,
agglomeration multigrid, and an implicit residual smoothing technique based on the MAPS+ formulation
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[30]. The influence of turbulence is taken into account employing the one-equation model of Spalart and

Allmaras [31], following the implementation of [3]. Usually, CFL-numbers of six are employed, and con-

vergence rates similar to structured codes with Runge–Kutta timestepping and multigrid are achieved

[20,30].

To respect the constraint of a divergence-free velocity field for incompressible flows, the pressure cor-

rection equation (13) is implemented into the frame of the Runge–Kutta time integration. In the basic code,

the set of governing equations (1) is solved simultaneously with the multistage Runge–Kutta scheme

~WW ðmÞ
i ¼ ~WW ð0Þ

i þ aðmÞ � D~WW ðm�1Þ
i ; ð19Þ

where the superscripts ðmÞ denote the stage count with m running from 1 to the maximum number of stages,

the subscripts i correspond to the location at mesh points in the flow field, aðmÞ is the stage coefficient of the

ðmÞ-stage, and D~WW ðm�1Þ
i represent the conservative residuals of continuity, momentum and energy equations

evaluated with the MAPS+ discretization as in [20] using the flow variables from the previous ðm� 1Þ-
stage. In the basic code, pressure is obtained in each stage from the equation of state (3). For the present

pressure correction approach, pressure is not updated by the equation of state anymore, but the pressure

correction equation (13) is solved and pressure is computed via Eq. (14). The solution of Eq. (13) and

the pressure update by Eq. (14) are performed in each stage of the Runge–Kutta scheme prior to the
computation of the conservative residuals D~WWi . Using the pressure obtained from the pressure correction

equation ensures that at every stage, when evaluating the conservative flux balances used in the residual

computation, the constraint on the discrete divergence of the velocity field is established by solution of

Eq. (13).

The pressure correction equation (13) is solved in the whole computational domain using a simple point-

Jacobi method, and as a default 10 iterations are employed. Pressure is directly updated using Eq. (14),

where no relaxation factor as in classical pressure correction methods [23] is used. Also note that in contrast

to the SIMPLE pressure correction approach of [23], the pressure corrections are not used to compute any
‘‘velocity corrections’’. The derivation of the present pressure correction scheme was solely based on the

approximate solution of the Riemann problem. This led to the establishment of a pressure correction

equation, but it did not suggest any updates of velocities other than those directly obtained from the

momentum equations. This is consistent with observations reported in the textbook of Noll [32], where it is

found that for colocated pressure correction methods, additional ‘‘velocity corrections’’ besides the updates

obtained directly from the momentum equations are unnecessary.

In the pressure correction equation and in the evaluation of residuals D~WWi , for consistency the same space

discretization has to be employed, and here the MAPS+ discretization of [20] is used. For completeness the
MAPS+ discretization is given in Table 2, where the functions bM and bP are defined by [20]:

bM ¼ maxð0; 2 �Mmax 1 � 1Þ; Mmax 1 ¼ min½maxðjMLj; jMRjÞ; 1
;

bP ¼ maxð0; 2 �Mmin 1 � 1Þ; Mmin 1 ¼ min½minðjMLj; jMRjÞ; 1
:
ð20Þ

Note that for incompressible flows, the MAPS+ and the FDS scheme in Table 1 become identical. In order

to obtain the correct scaling of dissipation in the incompressible limit, the speed of sound c in Table 2 has to
be replaced by an artificial speed of sound c0 [20]:

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2q2 þM2

r c
2

q
;

a ¼ 1

2
1
�

�M2
r

�
;

ð21Þ

where q represents the flow speed, and Mr is a reference Mach number defined as
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M2
r ¼ min max

q2

c2
; k

q21
c21


 �
; 1

� �
; ð22Þ

with k usually set to unity. The artificial speed of sound c0 is also used to compute the allowable time step.

To solve the governing equations (5) for constant density incompressible flow, in the basic Runge–Kutta

time integration of Eq. (19) the density and energy components of ~WW are not updated. To account for

variations in density and temperature, an equation of temperature needs to be established. To ensure
conservation properties, this temperature equation is based on changes of conservative variables. Tem-

perature is related to the conservative variables ~WW by

T ¼ ðc � 1Þ qE
q

"
� 0:5 � ðquÞ

2 þ ðqvÞ2

q2

#
; ð23Þ

and using the chain rule temperature changes DT can be expressed through changes in conservative vari-
ables D~WW as

DT ¼ ðc � 1Þ 1
q
½ð�E þ u2 þ v2Þ � Dq � u � DðquÞ � v � DðqvÞ þ DðqEÞ
: ð24Þ

With the Runge–Kutta time stepping of Eq. (19), temperature is integrated by

T ðmÞ
i ¼ T ð0Þ

i þ aðmÞ � DT m�1
i : ð25Þ

Table 2

Dissipative terms of MAPS+ scheme

DFq ¼ 1

cmax
ð1� jM0jÞDp þ qbMDqn þ jqnjDq

DFqu ¼ nxb
PDp þ 1

cmax
uð1� jM0jÞDp þ nxq

mincminð1� jM0jÞDqn þ qubMDqn þ jqnjDqu

DFqy ¼ nyb
PDp þ 1

cmax
vð1� jM0jÞDp þ nyqmincminð1� jM0jÞDqn þ qvbMDqn þ jqnjDqv

DFqH ¼ 1

cmax
Hminð1� jM0jÞDp þ qHbMDqn þ jqnjDqH

jM0j ¼ minðmaxðjMLj; jMRjÞ; 1Þ

cmax ¼ maxðcL; cRÞ

cmin ¼ minðcL; cRÞ

qmin ¼ minðqL;qRÞ

Hmin ¼ minðHL;HRÞ

u ¼ 0:5 � ðuL þ uRÞ
v ¼ 0:5 � ðvL þ vRÞ
q ¼ 0:5 � ðqL þ qRÞ
qu ¼ 0:5 � ðqLuL þ qRuRÞ
qv ¼ 0:5 � ðqLvL þ qRvRÞ
qH ¼ 0:5 � ðqLHL þ qRHRÞ
bM ! see Eq. (20)

bP ! see Eq. (20)
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Density is then updated in each stage using the equation of state (3). Note that this implementation does

not allow time accurate computations, since density changes in the continuity equation were neglected in

the derivation of the pressure correction equation. This is of no concern in the present work, because for

steady flow computations the final steady state solution is not affected.

With this implementation, inviscid flow around the NACA0012 airfoil was computed. As computational

mesh, a structured O-mesh with 160 cells around the airfoil and 32 cells in normal direction was used.

Completely incompressible flow ðM1 ¼ 0:0Þ was computed by setting density constant, and low Mach

number flow atM1 ¼ 0:001 where density and temperature variations were taken into account by using Eq.
(24). The angle of attack was chosen to a ¼ 0�. No multigrid acceleration was employed for the inviscid

flow, and it was found that the allowable CFL-number had to be reduced from 6 to about 4. In the first two

columns of Table 3, the number of time steps required to reach a convergence criterion of 10�8 are given for

the completely incompressible, constant density flow at M1 ¼ 0:0, and for the very low Mach number flow

at M1 ¼ 0:001. Note that as residual for the constant density flow the change of velocity was used instead

of change of density. As can be seen from the table, the inclusion of temperature and density variation did

not lead to a significant change in the convergence properties.

From these test cases, it may be concluded that the pressure correction approach derived above is
feasible for completely incompressible, constant density and very low Mach number flows within the

framework of the original compressible NOUGAT code. However, the question remains how to accom-

plish the transition to compressible flows in order to derive a method applicable for all speeds.

6. Extension to compressible flows

Inspection of the pressure correction equation (13) reveals that for Mach numbers M P 1, the left hand
side of Eq. (13) vanishes, and the equation becomes undetermined and unsolvable. To prevent the left

hand side going to zero withM approaching unity, a time derivative of pressure may be added to the left hand

side of Eq. (13) to represent the temporal change of density in the continuity equation:

oq
ot

¼ 1

c2
op
ot

; ð26Þ

where Laplace�s equation (4) was employed to express temporal changes in density by changes of pressure.
The pressure correction equation (13) was basically derived from the discrete continuity equation under the

constraint that divergence of velocity must be zero. Adding the time derivative of density, respectively

pressure, relaxes this constraint, but the pressure correction equation is now well defined for M P 1.

However, the pressure correction equation is still purely elliptic, which violates the nature of supersonic

flow. To remedy this, one can again use the discrete continuity equation and express all terms involving

density with

Table 3

Number of time steps required for inviscid, incompressible flow around NACA0012 at a ¼ 0� to reduce residual by eight orders of

magnitude

Case Method

Pressure based, no

preconditioning,

constant density,

M1 ¼ 0:0

Pressure based, no

preconditioning,

variable density,

M1 ¼ 0:001

Pressure based,

preconditioning,

variable density,

M1 ¼ 0:001

Density based,

preconditioning,

variable density,

M1 ¼ 0:001

NACA0012,

a ¼ 0�
662 668 594 1387
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q ¼ c
c2
ðp þ p0Þ; ð27Þ

and build the left hand side coefficients for p0. Due to the upwinding of the basic spatial discretization, this

leads to an elliptic/hyperbolic equation for the pressure correction p0 similar to equations derived in [12–18],

where incompressible, pressure based methods were extended to compressible flows. Note that relation (26)

is only valid for isentropic flows, which will however not affect the steady state solution but should only

influence the convergence behavior, as was argued, e.g., in [12,13].

In order to assess the suitability of the present pressure correction approach for compressible flows, 1D

flow in a Laval nozzle was computed. In order to clearly identify the capabilities and limits of the approach,
only a first order implementation was investigated, and for time integration a 3-stage Runge–Kutta scheme

without any acceleration techniques except local time stepping was used. Results obtained with the basic

compressible code using the MAPS+ discretization [20] served as reference. Fig. 1 shows the Mach number

distribution in the Laval nozzle for different values of backpressure. The case with the lowest backpressure

yielding a pre-shock Mach number of about M ¼ 2:9 is identical to the case used in the investigations of

[20,33], where the properties of the MAPS and MAPS+ spatial discretizations were assessed. In Fig. 2, for

different approaches the number of time steps required to reduce the density residual by nine orders of

magnitude is displayed as a function of pre-shock Mach number. The results of the compressible, density
based code are denoted by circles. For the two lower Mach number cases, the pressure based approach with

the elliptic/hyperbolic pressure correction performed somewhat better than the density based approach.

Note that when using the pressure correction equation (13) with the time derivative term of Eq. (26) only,

the integration diverged whenever supersonic flow occurred. Only the change from elliptic to hyperbolic

character using Eq. (27) established a stable integration. Due to the formulation of the temperature

equation (24), the conservation properties of the basic discretization are not violated with the present

pressure correction approach, and exactly the same steady state solutions as with the density based code

were obtained. Thus, the good shock capturing capabilities of the MAPS+ discretization are retained for
the pressure based approach.

Reduction of backpressure to achieve a pre-shock Mach number of about M ¼ 2:0 led to very slow

convergence of the present pressure correction approach, and even after 10,000 time steps the convergence

Fig. 1. Mach number distribution for variation of backpressure in 1D Laval nozzle flow.
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criterion was not reached, as indicated by the slope of the dash-dotted line in Fig. 2. Further reduction of

backpressure to increase Mach number resulted in divergence of the present pressure based approach.

Neither reduction of CFL number nor introduction of pressure relaxation in Eq. (14) led to stable solu-

tions. Due to these experiences and guided by the observation that the density based approach proved to be

well suited for high speed compressible flows [20,33], in this work the purely pressure based approach was

not pursued further for computation of flows at all speeds.
From the findings outlined above it became apparent that a blending from the low speed, pressure based

formulation to the high speed, density based formulation should be established. Essentially, two possi-

bilities exist: the first is to use the pressure based approach up to a certain finite Mach number, e.g.,

M ¼ 0:3, and for Mach numbers higher than that use the density based approach. A similar technique was

used in [17] to switch between the classical incompressible discretization of [21] and the compressible FDS

scheme according to [19]. However, this introduces some arbitrariness in the selection of a suitable

switching Mach number. Furthermore, the approximate solution of the Riemann problem, which led to the

discretization summarized in Eq. (7) and Table 1, and which was also used as a guideline to derive the
pressure correction equation (13), suggests otherwise and leads to the second possibility:

The actual pressure pact to be used in the computation may be computed with a blending function from

the dissipative terms corresponding to the approximate solution of the Riemann problem, Table 1, as

pact ¼ ð1� jM0jÞ � pinc þ jM0j � pcomp; ð28Þ

where pinc is the ‘‘incompressible’’ pressure determined from the pressure correction equation (13), and pcomp

is the ‘‘compressible’’ pressure computed with the common formula

p ¼ ðc � 1Þ qE
�

� 1

2
qq2
�
: ð29Þ

Note that pinc computed from the pressure correction enters the residual computation in the Runge–Kutta

time stepping scheme. Due to the blending ð1� jM0jÞ � pinc, this influence on the flux balances is linearly

reduced to zero when the flow becomes supersonic, resulting in a purely density based scheme in such cases.
Despite the fact that the ‘‘incompressible’’ pressure contribution is now switched off for M P 1, Eq. (13)

Fig. 2. Number of time steps as function of pre-shock Mach number for 1D Laval nozzle flow computed with different approaches.
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must be prevented from becoming unsolvable, and therefore at least the time derivative term defined in Eq.

(26) needs to be added. In order to still enforce the divergence-free velocity field in the incompressible limit,

in Eq. (26) the physical speed of sound is used, whereas for the scaling of Dp0 in Eq. (13) the artificial speed

of sound c0 is employed. In doing so, the influence of the time derivative term becomes negligible in the

incompressible limit.

The performance of the blended pressure/density based approach for the Laval nozzle flow problems is

also displayed in Fig. 2 by triangular symbols. For the formulation of the pressure correction equation, the

elliptic/hyperbolic formulation employing Eqs. (26) and (27) was used as well as the purely elliptic for-
mulation, where only the time derivative of pressure Eq. (26) was added. The blended approach required

less time steps than the purely density based approach, and no problems were encountered for higher Mach

number flows. The elliptic/hyperbolic pressure correction equation did not yield any advantages compared

to the purely elliptic pressure correction equation, and therefore in the following only the elliptic equation

was used. Due to the respect of the strong conservation form in both the pressure based and the density

based approach, the blending with Eq. (28) does not lead to any inconsistencies, and all steady state results

were exactly identical to those obtained with the purely density based approach.

However, this blending technique poses the problem that even at very small Mach numbers, still a very
small but finite part of the ‘‘compressible’’ pressure needs to be computed. Without any special means, this

would require very small time steps due to the acoustic eigenvalues governing the time step size. Therefore,

low speed preconditioning needs to be used to enable an efficient computation. Note that this does not

impair the respect of the divergence-free constraint, since in the incompressible limit only negligible frac-

tions of the ‘‘compressible’’ contribution to pressure will be used, see Eq. (28). In the literature, different

preconditioning matrices are proposed [7–10], and their derivation is mainly based on the reduction of the

stiffness of the equations. Choi and Merkle also addressed the problem of preconditioning for viscous flows

and established a suitable method [8]. As observed in [7,10], this method does not revert to the unpre-
conditioned case for M P 1, and in [7] it was viewed as preferable to eliminate the preconditioning for

supersonic flows. Therefore, in the following a preconditioning matrix similar to that in [8] will be derived

which yields the identity matrix for supersonic flow. Coherent with the line of argumentation used

throughout this contribution, the derivation of this preconditioning matrix will be based on terms from the

approximate solution of the Riemann problem using the Mach number expansion of the FDS scheme [20].

For brevity only the 1D case is regarded.

Consider the discrete 1D Euler equations discretized using Eq. (7) and Table 1 or Table 2. This leads to

the system of equations

ð1
�

� jM0jÞ
1

c2
Dp
Dt

�
þ Dq

Dt
þ oðquÞ

ox
¼ 1

c
ð1� jM0jÞ

D2p
Dx

þODT;

ð1
�

� jM0jÞu
1

c2
Dp
Dt

�
þ DðquÞ

Dt
þ oðqu2 þ pÞ

ox
¼ u

1

c
ð1� jM0jÞ

D2p
Dx

þODT;

ð1
�

� jM0jÞH
1

c2
Dp
Dt

�
þ DðqEÞ

Dt
þ oðquHÞ

ox
¼ H

1

c
ð1� jM0jÞ

D2p
Dx

þODT;

ð30Þ

where on the right hand side D2p denotes second differences of pressure in the low speed pressure dissi-

pation, and ODT denotes other dissipative terms. On the left hand side the spatial partial derivatives should

denote the centrally discretized flux balances, and the time derivatives of the conservative variables are
expressed as finite differences. Furthermore, one finds on the left hand side of Eq. (30) terms given in

brackets which do not follow directly from Eq. (7) and Table 1 or Table 2: to all equations, appropriately

scaled finite difference approximations of the time derivative of pressure were added artificially to coun-

terbalance the spatial second derivatives of pressure on the right hand side. Consistent with the pressure
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differences on the right hand side, these time derivatives are multiplied by ð1� jM0jÞ. Using Eq. (29), the

change in pressure Dp may be expressed by changes of conservative variables as

Dp ¼ cð � 1Þ q2

2
Dq

�
� uD quð Þ þ D qEð Þ

�
: ð31Þ

Introducing the definition of Dp given by Eq. (31) into Eq. (30), all terms with Dq;DðquÞ;DðqEÞ may be

grouped as elements of a matrix P
�1

. For preconditioning, the physical speed of sound c in Eq. (30) has to

be replaced by the artificial speed of sound c0 according to Eq. (21). Inversion of the matrix P
�1

formed by

the changes of the conservative variables leads to a preconditioning matrix P to directly multiply the

conservative residuals. Omitting the multiplication with ð1� jM0jÞ on the left hand side in Eq. (30), this

matrix becomes similar to the preconditioning matrix of Choi and Merkle, as was observed already in [34].

However, in [34] no use was made of this connection to obtain a preconditioning matrix directly for

multiplication of the conservative residuals. Multiplication of the pressure changes by ð1� jM0jÞ reduces
the influence of preconditioning to zero for M P 1 . The inversion of the matrix P

�1

obtained from Eq. (30)

is easily achieved, and the extension to higher dimensions is straightforward. The matrix P
�1

and its inverse,

the preconditioning matrix P , are given in Table 4 for 3D application. Note the ordering of variables in the

vector of conservative variables ~WW , which deviates from the conventional ordering. This ordering enables
an easy extension from the 1D case to higher dimensions, however the conservative residuals have to be

ordered in the same way before multiplication.

In Table 3, also the number of time steps required for convergence using the pressure correction ap-

proach with and without preconditioning for the computation of flow around the NACA0012 airfoil at

M1 ¼ 0:001 and a ¼ 0� is given. From these results it is concluded that the pressure correction approach

also works well in combination with preconditioning.

7. Application of the method

First, the developed method was applied to the computation of inviscid flow fields. In order to check the

consistency and functionality of the blending technique between pressure and density based approach, a
grid refinement study for a variety of Mach numbers was performed. For the NACA0012 airfoil at a ¼ 0�,
free-stream Mach number was varied from M1 ¼ 0:001 to M1 ¼ 0:85, and computations were performed

on meshes with 40� 8, 80� 16, and 160� 32 cells. For comparison the purely pressure based approach

established in Section 5, the blended approach of Section 6, and the basic compressible, density based

approach were investigated. In all cases the preconditioning matrix of Table 4 was used, and for pressure

correction the elliptic equation (13) with added time derivative (26) was employed throughout. Fig. 3

displays surface pressure distributions obtained on the finest mesh for selected Mach numbers, which il-

lustrate the change in the flow characteristics. To assess the consistency of the three investigated methods,
drag coefficients computed on successively refined meshes for increasing free-stream Mach number are

listed in Table 5. Up to a free-stream Mach number of M1 ¼ 0:7, the flow remained completely subsonic,

and the exact drag coefficient should be zero. As can be seen from Table 5, with mesh refinement the error

in drag is reduced by approximately a factor of 4, consistent with second order accuracy of the numerical

method. The steady state results from all three methods investigated were exactly identical on all three

meshes for all Mach numbers, therefore only one set of results is listed. The fact that the steady state results

of the different approaches are identical at steady state was already observed for the 1D Laval nozzle flow,

and the mesh refinement investigation performed in 2D gives additional proof of the consistency of the
blending technique.
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The convergence behavior of the present method can be assessed from Fig. 4, where the time steps

required to reduce the density residual by eight orders of magnitude on the finest mesh are displayed as a

function of free-stream Mach number. For the density based approach, the CFL number was set to

CFL ¼ 6, for the blended approach to CFL ¼ 3:5, and for the purely pressure based approach, up to a free-
stream Mach number of M1 ¼ 0:2 also CFL ¼ 3:5 could be used, and with increasing free-stream Mach

number the CFL number had to be reduced successively to CFL ¼ 1:5 . Several observations can be made

from Fig. 4. The pressure based approach converged significantly faster for low Mach number flows than

the density based approach, despite the lower CFL number, see also Table 3. Solving the pressure cor-

rection equation, for Mach numbers above M1 ¼ 0:2 the number of time steps required increased, espe-

cially for the purely pressure based approach. Using the density based approach the number of time steps

remained almost constant for free-stream Mach numbers below M1 ¼ 0:5 . At M1 ¼ 0:5, the purely

pressure based approach lost its attractiveness due to the steep increase in the number of time steps required
at higher free-stream Mach numbers. For the transonic cases, convergence of this approach severely de-

generated, and for M1 ¼ 0:85 even after 10,000 time steps the convergence criterion was not met, indicated

by the dash-dotted line in Fig. 4. The blended pressure/density based method combined the strengths of

pressure and density based approaches: for incompressible and low Mach number flows it yielded the ef-

ficiency of the pressure based method, for higher Mach number subsonic flows it still offered some ad-

vantage compared to the density based approach, and for the transonic cases it only slightly degraded with

respect to the density based approach.

In the next case the robustness of the method was to be assessed. For the inviscid, incompressible flow
around the NACA0012, the angle of attack was increased from a ¼ 12� to a ¼ 14� and a ¼ 16�. The
corresponding convergence histories are shown in Figs. 5 and 6. For a ¼ 14�, reasonable convergence was

Table 4

Preconditioning matrix for conservative residuals

Definitions (note ordering of equations in vector of conservative variables ~WW )

~WW ¼

q
qE
qu
qv
qw

2
66664

3
77775; q2 ¼ u2 þ v2 þ w2; c2 ¼ c

p
q
; h ¼ 0:5 � q2 þ c2

c � 1

H ¼ ð1� jM0jÞ �
c � 1

c0
; jM0j ! see Eq: ð8Þ; c0 ! see Eq: ð21Þ

Matrix resulting from addition of pressure time derivative (see Eq. (30))

P
�1

¼

0:5 � Hq2 þ 1 H �Hu �Hv �Hw
0:5 � Hq2h Hhþ 1 �Huh �Hvh �Hwh
0:5 � Hq2u Hu �Hu2 þ 1 �Hvu �Hwu
0:5 � Hq2v Hv �Huv �Hv2 þ 1 �Hwv
0:5 � Hq2w Hw �Huw �Hvw �Hw2 þ 1

2
66664

3
77775

Preconditioning matrix for multiplication of conservative residuals

P ¼ 1

Hðh� 0:5q2Þ

�

Hðh� q2Þ þ 1 �H Hu Hv Hw
�0:5 � Hq2h �0:5 � Hq2 þ 1 Huh Hvh Hwh
�0:5 � Hq2u �Hu Hð0:5 � q2 þ h� v2 � w2Þ þ 1 Hvu Hwu
�0:5 � Hq2v �Hv Huv Hð0:5q2 þ h� u2 � w2Þ þ 1 Hwv
�0:5 � Hq2w �Hw Huw Hvw Hwð0:5q2 þ h� u2 � v2Þ þ 1

2
6666664

3
7777775
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Table 5

Computed drag coefficient as function of Mach number and grid refinement for inviscid flow around NACA0012 at a ¼ 0�

Grid M

0.001 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.85

40� 8 .01875 .01875 .01882 .01906 .01950 .02021 .02135 .02300 .02549 .02776 .06780

80� 16 .00482 .00482 .00483 .00487 .00493 .00502 .00517 .00541 .00578 .00615 .05286

160� 32 .00096 .00096 .00096 .00096 .00096 .00097 .00097 .00098 .00099 .00103 .04748

Fig. 3. Surface pressure distribution for Mach number variation of inviscid flow around NACA0012 airfoil at a ¼ 0�.

Fig. 4. Number of time steps as function of free-stream Mach number for inviscid flow around NACA0012 airfoil computed with

different approaches.
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achieved, for a ¼ 16� the residual decreased only very slowly and oscillatory, and total lift exhibited also

oscillations, which however die out. The same case was run without the pressure correction approach but

with the basic preconditioned, density based scheme. As can be seen in Fig. 7, increasing the angle of attack

from a ¼ 13� to 13.5� destroyed the convergence of the scheme. In Figs. 8 and 9 the pressure distributions

for a ¼ 12�–16� are displayed, where Fig. 9 shows an enlargement of the trailing edge region. Increasing the

angle of attack beyond 12� brought the inviscid flow closer to separation. This separation was solely

triggered by the inherent numerical dissipation, it occured earlier on coarser meshes and later on finer

Fig. 5. Convergence for inviscid, incompressible flow around NACA0012 airfoil at a ¼ 12�–14� with blended pressure based method.

Fig. 6. Convergence for inviscid, incompressible flow around NACA0012 airfoil at a ¼ 16� with blended pressure based method.
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meshes. No physical arguments hold for the occurrence of separation, it is completely of numerical nature.

The respect of the divergence-free velocity field is assumed to become crucial close to separation, and due to

the lack of any means to enforce this constraint, the basic preconditioned, density based method failed for

the computation of such flows.

In the next test cases, the computation of viscous flow around the RAE2822 airfoil at M1 ¼ 0:0 and

a ¼ 8� was considered using a hybrid mesh. The hybrid mesh was identical to the mesh used in [30] and

Fig. 7. Convergence for inviscid, incompressible flow around NACA0012 airfoil at a ¼ 13�–13:5� with preconditioned density based

method.

Fig. 8. Pressure distributions for inviscid, incompressible flow around NACA0012 airfoil at a ¼ 12�–16�.
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consisted of about 23,000 quadrilateral and triangular cells, where the 4800 quadrilateral cells were used in

the vicinity of the airfoil to resolve the viscous region, with 192 of these cells located directly on the airfoil

surface. A 4-level agglomeration multigrid was used to accelerate convergence, and the influence of tur-
bulence was modeled following Spalart and Allmaras [31]. In Table 6, the number of multigrid cycles re-

quired to drive the residual down by five orders of magnitude is given. Additionally, results are listed for the

computation of the same configuration at M1 ¼ 0:001 with and without preconditioning. As can be seen

from Table 6, convergence for these cases was not as favorable as for theM ¼ 0 case. This may be explained

by the fact that forM1 ¼ 0:0 the residual was computed from changes of velocity, which were set to zero on

the solid surface. For the cases at M1 ¼ 0:001, the residual was based on the change of density, which was

computed also on the solid surface. Here the largest residuals occurred always at the trailing edge, thus

deteriorating convergence. In order to test the applicability of the blending technique to compressible flow,
the free-stream conditions were changed to M1 ¼ 0:73 and a ¼ 2:8�. Fig. 10 shows that the convergence of

the new method is comparable to that of the standard compressible code, despite the fact that only a CFL

number of 4 was used. The corresponding pressure distribution is displayed in Fig. 11. The results are

identical to those obtained with the compressible, density based code, which is also indicated by the

convergence to the same final lift coefficient in Fig. 10. The results correspond to results obtained with the

DLR-s code [35].

Table 6

Number of multigrid cycles required for viscous, incompressible flow around RAE2822 at a ¼ 8� to reduce residual by five orders of

magnitude

Case Method

Pressure based, no

preconditioning,

constant density,

M1 ¼ 0:0

Pressure based, no

preconditioning,

variable density,

M1 ¼ 0:001

Pressure based,

preconditioning, variable

density, M1 ¼ 0:001

Density based,

preconditioning, variable

density, M1 ¼ 0:001

RAE2822, a ¼ 8� 258 450 285 338

Fig. 9. Pressure distributions for inviscid, incompressible flow around NACA0012 airfoil at a ¼ 12�–16�, enlargement at trailing edge.
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To asses the robustness of the method for incompressible flow, similarly to the inviscid computations the

angle of attack was increased, here from a ¼ 8� to a ¼ 11:25�. As can be seen from Fig. 12, using the default
value of 10 Jacobi iterations for the solution of the pressure correction equation, the computation did not

converge. Boldly increasing this number to 100 iterations however led to convergence. This behavior is

assumed to be triggered by the very large cell aspect ratios close to the solid surface, thus severely increasing

the stiffness of the pressure correction equation. Application of the preconditioned, density based method

did not lead to convergence, Fig. 13. The difficulties in computing this case can again be traced back to the

onset of separation, as is visible in the pressure distributions shown in Figs. 14 and 15.

Fig. 10. Convergence for viscous, compressible flow around RAE2822 airfoil computed with blended pressure based method and

density based method.

Fig. 11. Pressure distribution for viscous, compressible flow around RAE2822 airfoil.
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8. Conclusion

A pressure correction equation was derived from the approximate solution of the Riemann problem at

low speeds, and parallels to classical incompressible methods were drawn. The derivation was mainly based

on the observation that for incompressible flows, the velocity field has to be divergence-free, and to enforce

this constraint a corresponding pressure field needs to be established. Due to the consistent derivation from

Fig. 12. Convergence for viscous, incompressible flow around RAE2822 airfoil computed with blended pressure based method using

10 and 100 Jacobi iterations.

Fig. 13. Convergence for viscous, incompressible flow around RAE2822 airfoil computed with preconditioned density based method.
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the approximate solution of the Riemann problem, the incorporation into the framework of a compressible

code was straightforward, and completely incompressible flow at M1 ¼ 0:0 could be computed. In order to

allow the computation of flows with mixed incompressible/compressible regions, a suitable blending

technique was developed for the transition from the pressure based, incompressible method to the density
based, compressible method. The blending functions were also derived from the approximate solution of

Fig. 14. Pressure distributions for viscous, incompressible flow around RAE2822 airfoil close to separation.

Fig. 15. Pressure distributions for viscous, incompressible flow around RAE2822 airfoil close to separation, enlargement at trailing

edge.
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the Riemann problem. The blending reflects the change in the character of the unsteady equations from

elliptic/hyperbolic for incompressible flows to purely hyperbolic for compressible flows. It was found

necessary to use preconditioning with this blending technique to account for a remaining ‘‘compressible’’

contribution in the incompressible limit, and a suitable matrix directly applicable to conservative residuals

was derived. The blended pressure based approach allowed to exploit the advantages of the separate so-

lution of the continuity equation to establish the divergence-free constraint. This led to improved con-

vergence and robustness for incompressible flows. The blending to a density based scheme with increasing

Mach number retained the robustness and accurate shock capturing capabilities of such methods for high
speed flows.

With this work, a coherent framework was established to cover the discretization of both incompressible

and compressible flows: the derivation of a pressure correction equation, the establishment of a suitable

preconditioning matrix, and the formulation of a flux splitting scheme for all speeds were consistently based

on the expansion of the classical FDS scheme in terms of Mach number [20].

Future work needs to be directed to an improvement of the method used to solve the pressure correction

equation. The simple point-Jacobi iteration used here for conceptual investigations degrades considerably for

high aspect ratio meshes and thus impairs the benefit possibly to be achieved by the solution of this equation.
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